FISH SIDE-STREAM AS A POTENTIAL PEPTONE PRODUCTION: TOWARDS ZERO WASTE FISH PROCESSING

Abdul Aziz Jaziri, Dian W. Wardani, Wan Norhana Md. Noordin, Nurul Huda

Abstract


Fish processing plants generated significant side-streams composing of heads, skins, trimmings, frames, and guts, which estimated for 70-85% of raw-fish materials during fillet and surimi production. These pose a serious impact to terrestrial and aquatic environments due to the abundance of organic content. Treating side-streams, on the other hand, would impact on financial burden of the fish processing industries. Therefore, an attempt is necessary to convert fish side-streams into value-added products. This is not only to reduce financial burden but also in accordance with the 12th Sustainable Development Goal (SDG) which support zero-waste processing concept. One of the promising products from fish side-streams is peptone. Peptone, a protein hydrolysate characterized as non heat-coagulable and water-soluble product, extensively used in microbiological media. As microbial growth accelerating media, fish peptone could be a precursor for beneficial metabolic products, such as antimicrobial peptides and other bioactive compounds. This review highlights the isolation of peptone from fish processing side-streams specifically the extraction and characterization. In addition, the metabolite productions from lactic acid bacteria with fish peptone-supplemented media are also covered.


Keywords


characteristics, fish side-stream, metabolite production, peptone

Full Text:

PDF

References


FAO. (2020).www.fao.org. Accessed Oct 31, 2020.

J. S. Kim, and J. W. Park. “Mince from seafood processing by-product and surimi as food ingredients.” Maximising the Value of Marine By-Products, pp. 196-228. 2007.

A. Nawaz, L. Engpeng, S. Irshad, Z. Xiong, H. Xiong, H. M. Shabaz, and S. Siddique. “Valorization of fisheries by-products: Challenges and technical concerns to food industry,” Trends Food Sci. Technol., vol. 99, pp. 34-43.

A. A. Jaziri, D. Setijawati, H. S. Yufidasari, M. D. Pratomo, D. W. Wardani, d. Ersyah, and N. Huda, “Characteristics of peptones from grouper (Epinephelus fuscoguttatus) and parrotfish (Scarus javanicus) head by-products as bacterial culture media,” J. Biotech. Res., vol. 11, 2020.

D. Setijawati, A. A, Jaziri, H.S. Yufidasari, M.D. Pratomo, D.W. Wardani,. D. Ersyah, and N. Huda, Characteristics and use of peptones from catfish (Clarias gariepinus) and pangas catfish (Pangasius pangasius) heads as bacterial growth media. Squalen Bulletin Mar. Fish. Postharv. Biotechnol., vol. 15, no. 1, pp. 19-29, 2020.

L. D. Shirahigue, I. S. Ribeiro, L. F. de A. Sucasas, L. Anbe, P. Vaz-Pires, and M. Oetterer, “Peptones in silage from tilapia (Oreochromis niloticus) and cobia (Rachycentron canadum) waste as a culture medium for bioprocesses,” J. Aquat. Food Prod. Technol., vol. 27, no. 6, pp. 712–721, 2018.

A. Poernomo and K. A. Buckle, “Crude peptones from cowtail ray (Trygon sephen) viscera as microbial growth media,” World J. Microbiol. Biotechnol., vol. 18, no. 4, pp. 333–340, 2002.

Y, Srikandace, S. Priatni, S. Pudjiraharti, W. Kosasih and L, Indrarti. “Kerong fish (Terapon jarbua) peptone production using papain enzyme as nitrogen source in bacterial media.” J. Physics: Conference Series, pp. 1-5, 2017.

N. Husin, S. Mazlina, M. Kamal, L.T. Chuan, N. F. Muhammad and N. Jusoh, Comparison of microbial growth on fish waste peptones from different hydrolysis methods, 5th International Conference on Biomedical Engineering & Technology (ICBET 2015), IACSIT Press, Singapore, 54-57, 2015.

J. A. Vazquez, A. C. Rodrigues, P. Fucinos, L. Pastrana and M. A. Murado, “Bio-silage of mussel work-processing wastes by Lactobacilli on semi-solid culture,” J. Food Eng., vol. 97, no. 3, pp. 355-359, 2010.

J. A. Vazquez, M. P. Gonzalez and M. A. Murado. “Peptones from auto hydrolysed fish viscera for nisin and pediocin production,” J. Biotechnol, vol. 112, pp. 299–311, 2004.

S. R. Rajendran, A. Mohan, Z. Khiari, C. C. Udenigwe, and B. Mason, “Yield, physicochemical, and antioxidant properties of Atlantic salmon visceral hydrolysate: Comparison of lactic acid bacterial fermentation with Flavourzyme proteolysis and formic acid treatment,” J. Food Process. Preserv., vol. 42, no. 6, 13620. 2018.

Statistics Indonesia. Statistics Bulletin Foreign Trade. https://www.bps.go.id. 2014 Accessed Nov 9, 2019. (in Indonesian)

D. Setijawati, A. A. Jaziri, H. S. Yufidasari, and D. W. Wardani, “Characteristics of peptone from the mackerel, Scomber japonicus head by-product as bacterial growth media,” Biosci. Biotechnol. Res. Commun., vol. 12, no. 4, pp. 829–836, 2019.

S. F, See, L. L. Hoo, and A. S. Babji, “Optimization of enzymatic hydrolysis of salmon (Salmo salar) skin by alcalase.” Int. Food Res. J., vol. 18, pp. 1359-1365, 2011.

A. Gildberg, R. Dahl, H. Mikkelsen, and K. Nilsen, “Peptones from atlantic cod stomach as nitrogen sources in growth media to marine bacteria,” J. Aquat. Food Prod. Technol., vol. 19, no. 2, pp. 75–83, 2010.

M. D. Pratomo, D. W. Wardani, N. A. Revonagara, D. Ersyah, D. Setijawati, H. S. yufidasari and A. A. Jaziri, “Characteristics of peptone from threadfin bream (Nemipterus sp.) waste as a halal bacterial growth medium,” J. Aquac. Fish Heal., vol. 9, no. 2, pp. 104, 2020.

S. M. Najim, J. M. Al-Noor, and W. A. Al-Waely, “Extraction of crude peptone from fish wastes for use as a nitrogen source in microbiological media,” Glob. J. Fish. Aquac. Res., vol. 2, pp. 29–37, 2015.

H. G. Kristinsson and B. A. Rasco, “Biochemical and functional properties of Atlantic salmon (Salmo salar) muscle proteins hydrolyzed with various alkaline proteases,” J. Agric. Food Chem., vol. 48, no. 3, pp. 657–666, 2000.

D. Saputra and T. Nurhayati, “Application and production of yellowstripe sead fish peptone for bacteria’s growth media,” J. Fish. Prod. Process. Indonesia, vol. 16, pp. 215–223, 2013. (in Indonesian)

T. Nurhayati and M. Suhandana, “Enzymatically produced peptone using little tuna viscera,” J. Fish. Prod. Process. Indonesia, vol. 16, no. 1, 2014. (in Indonesia)

S. Priatni, K. Harimadi, E. Buana, W. Kosasih, and R. Rohmatussolihat, “Production and characterization of spray-dried swamp eel (Monopterus albus) protein hydrolysate prepared by papain,” Sains Malaysiana, vol. 49, no. 3, pp. 545–552, 2020.

S. Tanuja, A. Haridas, A. A. Zynudheen, and C. G. Joshy, “Functional and antioxidative properties of fish protein hydrolysate (FPH) produced from the frame meat of striped catfish Pangasianodon hypophthalmus (Sauvage, 1878) using alkaline protease alcalase,” Indian J. Fish., vol. 61, no. 2, pp. 82–89, 2014.

M. Ovissipour, R. Safari, A. Motamedzadegan, and B. Shabanpour, “Chemical and biochemical hydrolysis of persian sturgeon (Acipenser persicus) visceral protein,” Food Bioprocess. Technol., vol. 5, no. 2, pp. 460–465, 2012.

J. A. Vázquez, A. Fernández-Compás, M. Blanco, I. Rodríguez-Amado, H, Moreno, J. Borderías, and R. I. Pérez-Martín, “Development of bioprocesses for the integral valorisation of fish discards,” Biochem. Eng. J., vol. 144, pp. 198–208, 2019.

J. A. Vázquez, A. I. Durán, A. Menduíña, and M. Nogueira, “Biotechnological valorization of food marine wastes: Microbial productions on peptones obtained from aquaculture by-products,” Biomolecules, vol. 10, no. 8, pp. 1–18, 2020.

J. A. Vázquez, M. I. Montemayor, J. Fraguas, and M. A. Murado, “High production of hyaluronic and lactic acids by Streptococcus zooepidemicus in fed-batch culture using commercial and marine peptones from fishing by-products,” Biochem. Eng. J., vol. 44, no. 2–3, pp. 125–130, 2009.

J. A. Vázquez, P. Ramos, J. Valcarcel, L. T. Antelo, R. Novoa-Carballal, R. L. Reis, and R. I. Pérez-Martín, “An integral and sustainable valorisation strategy of squid pen by-products,” J. Clean. Prod., vol. 201, pp. 207–218, 2018.

S. F. Deraz, G. F. El-Fawal, S. A. Abd-Ellatif, and A. A. Khalil, “Autohydrolysed Tilapia nilotica Fish Viscera as a Peptone Source in Bacteriocin Production,” Indian J. Microbiol., vol. 51, no. 2, pp. 171–175, 2011.

U. S. Zohora, M. S. Rahman, A. W. Khan, M. Okanami, and T. Ano, “Improvement of production of lipopeptide antibiotic iturin A using fish protein,” J. Environ. Sci. (China), vol. 25, no. S1, 2013.

Z. Khiari and B. Mason, “Comparative dynamics of fish by-catch hydrolysis through chemical and microbial methods,” LWT - Food Sci. Technol., vol. 97, no. pp. 135–143, 2018.

M. Djellouli, O. M. Alvarez, O. M. Arancibia, M. Y. Arancibia, M. Ugarte-Ruíz, D. Florez-Cuadrado, L. Domínguez, H. Zadi-Karam, N. Karam, s. Roudj, and E. López-Caballero, “Effect of seafood peptones on biomass and metabolic activity by Enterococcus faecalis DM19,” LWT - Food Sci. Technol., vol. 81, pp. 94–100, 2017.

L. Beaulieu, M. Desbiens, J. Thibodeau, and S. Thibault, “Pelagic fish hydrolysates as peptones for bacterial culture media,” Can. J. Microbiol., vol. 55, no. 11, pp. 1240–1249, 2009.

I. N. Tatterson, Iand M. L. Windsor, “Fish silage. J. Sci. Food Agric., vol. 25, pp. 369-379, 1974.


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.